Единица измерения уровня интенсивности звука. Теория звука и акустики понятным языком

Что такое звук и какими характеристиками обладают звуковые волны?

Единица измерения уровня интенсивности звука. Теория звука и акустики понятным языком

Раскаты грома, музыка, шум прибоя, человеческая речь и все остальное, что мы слышим – это звук. А что такое “звук”?

Источник изображения: pixabay.com

В действительности все, что мы привыкли считаем звуком – это всего лишь одна из разновидностей колебаний (воздуха), которые могут воспринимать наш мозг и органы слуха.

Какая природа у звука

Все звуки, распространяемые в воздухе, представляют собой вибрации звуковой волны. Она возникает посредством колебания объекта и расходится от её источника во всех направлениях.

Колеблющийся объект сжимает молекулы в окружающей среде, а затем создаёт разреженную атмосферу, заставляя молекулы отталкиваться друг от друга всё дальше и дальше.

Таким образом, изменения в давлении воздуха распространяются от объекта, сами молекулы остаются в неизменной для себя позиции.

Воздействие звуковых волн на барабанную перепонку. Источник изображения:prd.go.

th

По мере того, как звуковая волна распространяется в пространстве, она отражается от объектов, встречающихся на её пути, создавая изменения в окружающем воздухе.

Когда эти изменения, достигая вашего уха, воздействуют на барабанную перепонку, нервные окончания подают сигнал в мозг, и вы воспринимаете эти колебания как звук.

Основные характеристики звуковой волны

Самой простой формой звуковой волны является синусоида. Синусоидные волны в чистом виде редко встречаются в природе, однако именно с них следует начинать изучение физики звука, так как любые звуки можно разложить на комбинацию синусоидных волн.

Синусоида чётко демонстрирует три основных физических критерия звука – частоту, амплитуду и фазу.

Частота

Чем реже частота колебаний, тем звук ниже, Источник изображения:ReasonGuide.Ru

Частота – это величина, характеризующая количество колебаний в секунду. Она измеряется в количестве периодов колебания либо в герцах (ГЦ).

Человеческое ухо может воспринимать звук в диапазоне от 20 Гц (низкочастотные) и до 20 КГц (высокочастотные).

Звуки, находящиеся выше данного диапазона называется ультразвуком, а ниже – инфразвуком, и человеческими органами слуха не воспринимаются.

Амплитуда

Чем больше амплитуда звуковой волны, тем громче звук.

Понятие амплитуды (или интенсивности) звуковой волны имеет отношение к силе звука, которую человеческие органы слуха воспринимают как объём или громкость звука.

Люди могут воспринимать достаточно широкий спектр громкости звука: от капающего крана в тихой квартире, и до музыки, звучащей на концерте.

Для измерения громкости используются фонометры (показатели в децибелах), в которых используется логарифмическая шкала чтобы сделать измерения более удобными.

Фаза звуковой волны

Фазы звуковой волны. Источник изображения: Muz-Flame.ru

Используется для того, чтобы описать свойства двух звуковых волн. Если две волны имеют одинаковую амплитуду и частотность, то говорят, что две звуковые волны находятся в фазе.

Фаза измеряется в диапазоне от 0 до 360, где 0 – это значение, показывающее, что две звуковые волны синхронны (в фазе), а 180 – значение, означающее противоположность волн друг к другу (находятся в противофазе). Когда две звуковые волны находятся в фазе, то два звука накладываются и сигналы усиливают друг друга.

При совмещении двух сигналов, не совпадающих по амплитуде, из-за разницы давления идёт подавление сигналов, что приводит к нулевому результату, то есть звук исчезает. Этот феномен известен как “подавление фазы”.

При совмещении двух одинаковых аудио сигналов – подавление фазы может стать серьёзной проблемой, так же огромной неприятностью является совмещение оригинальной звуковой волны с волной, отражённой от поверхностей в акустической комнате. Например, когда совмещают левый и правый каналы стерео микшера, чтобы получить гармоничную запись, сигнал может страдать от подавления фаз.

Что такое децибел?

В децибелах измеряется уровень звукового давления или электрического напряжения. Это такая единица, которая показывает коэффициент отношения двух разных величин друг к другу. Бел (названный в честь американского ученого Александра Белла) является десятичным логарифмом, отражающим соотношение двух разных сигналов друг к другу.

Это означает, что для каждого последующего бела в шкале, принимаемый сигнал в десять раз мощнее. Например, звуковое давление громкого звука в миллиарды раз выше, чем у тихого. Для того чтобы отображать такие большие величины, стали использовать относительную величину децибел (дБ) – при этом 1.000.000.000 – это 109, или просто 9.

Принятие физиками акустиками данной величины позволило сделать работу с огромными числами удобнее.

Шкала громкости различных звуков. Источник изображения: Nauet.

ru

На практике получается так, что бел является слишком большой единицей для измерения уровня звука, поэтому вместо него стали использовать децибел, что составляет одну десятую от бела.

Нельзя сказать, что применение децибелов вместо белов – это как использование, скажем, сантиметров вместо метров для обозначения размера обуви, белы и децибелы — относительные величины.

Из выше сказанного понятно, что уровень звука принято измерять в децибелах. Некоторые эталоны уровня звука используются в акустике на протяжении многих лет, начиная со времён изобретения телефона, и по сей день.

Большинство этих эталонов сложно применить относительно современного оборудования, они используются только для устаревших единиц техники.

На сегодняшний день на оборудовании в студиях звукозаписи и вещания используется такая единица, как дБu (децибел относительно уровня 0,775 В), а в бытовой аппаратуре – дБВ (децибел, отсчитываемый относительно уровня 1 В). В цифровой аудио аппаратуре для измерения мощности звука применяется дБFS (децибел полной шкалы).

дБм – “м” обозначает милливатты (мВт), данная единица измерения используется для обозначения электрической мощности. Следует отличать мощность от электрического напряжения, хотя эти два понятия тесно связаны друг с другом. Единицу измерения дБм начали использовать ещё на заре внедрения телефонных коммуникаций, на сегодняшний день её тоже используют в профессиональной аппаратуре.

дБu — в данном случае измеряется напряжение (вместо мощности) относительно эталонного нулевого уровня, за эталонный уровень принято считать 0,75 вольт.

В работе с современной профессиональной аудио аппаратуре дБu заменён на дБм.

В качестве единицы измерения в сфере звукотехники было удобнее использовать дБu раньше, когда для оценки уровня сигнала было важнее считать электрическую мощность, а не его напряжение.

дБВ – в основе данной единицы измерения так же лежит эталонный нулевой уровень (как и в случае с дБu), однако за эталонный уровень принимают 1 В, что является более удобным, чем цифра 0,775 В. Данная единица измерения звука часто используется для бытовой и полу профессиональной аудио аппаратуры.

дБFS – данная оценка уровня сигнала широко используется в цифровой звукотехнике и сильно отличается от указанных выше единиц измерения.

FS (full scale) – полная шкала, которая используется из-за того, что, в отличие от аналогового звукового сигнала, которое имеет оптимальное напряжение, весь диапазон цифровых значений одинаково приемлем при работе с цифровым сигналом.

0 дБFS – это максимально возможный уровень цифрового звукового сигнала, который можно записать без искажения. У аналоговых стандартов измерения таких, как дБu и дБВ, после уровня 0 дБFS нет запаса по динамическому диапазону.

Если Вам понравилась статья ,поставьте лайкиподпишитесь на каналНАУЧПОП.Оставайтесь с нами, друзья! Впереди ждёт много интересного!

Источник: https://zen.yandex.ru/media/popsci/chto-takoe-zvuk-i-kakimi-harakteristikami-obladaiut-zvukovye-volny-5bfee53b9f25000ae1f79429

Интенсивность звука, необходимость её измерения

Единица измерения уровня интенсивности звука. Теория звука и акустики понятным языком

Теория акустики предусматривает три фундаментальных величины звука: звуковое давление, звуковая мощность и интенсивность звука.

Мощность звука – это величина, излучаемая источником звука.
Звуковое давление – величина, характеризующая звуковое поле и воспринимаемая человеческим ухом или звуковыми приборами. Слишком высокое звуковое давление может повредить слух человека.

Основные параметры, оказывающие влияние на величину звукового давления, это расстояние от источника звука до воспринимающего его прибора или человека и акустические условия звукового поля.

Ввиду этого для определения количества шума, испускаемого каким-либо источником, необходимо определить его звуковую мощность.

С точки зрения математики звуковая мощность это отнесенная к единице времени энергия звука.

Интенсивность звука, в свою очередь, отображает скорость потока звуковой энергии через единицу площади, и измеряется в ваттах на квадратный метр (Вт/м2).

Отображая направление потока звуковой энергии в определенной точке, интенсивность звука является векторной величиной и измеряется обычно в направлении нормали к определенной единичной площади.

Основная цель методов акустической интенсометрии – измерение интенсивности звука с целью определения интенсивности и локализации шума и разработке мер по снижению уровня шума на рабочем месте до безопасных для здоровья человека значений. Основным преимуществом измерения интенсивности звука по сравнению с измерением звукового давления является независимость величины этого параметра от параметров звукового поля.

Эта независимость позволяет с большой точностью выявить, идентифицировать и локализовать наиболее шумные узлы станков и механизмов даже на фоне общего звукового поля.

Звуковое поле – это пространство распространения звуковых волн. Описано несколько видов звуковых полей:

  • Свободное звуковое поле – такое поле, где звуковые волны распространяются в идеальном пространстве без каких-либо отражений. Примером таких полей могут считаться безэховые камеры и воздушное пространство на значительном удалении от земной поверхности.
  • Диффузное звуковое поле – поле, в котором существуют множественные отражения звуковых волн, распространяющихся в результате во всех направлениях с идентичными амплитудой и вероятностью. Благодаря определенному соотношению между звуковым давлением и односторонней интенсивностью звука можно определить звуковую мощность источника в таком поле (ISO 3741).
  • Активное и реактивное поля – звуковые поля, для которых соответственно характерно и нехарактерно наличие звукового потока. Любое звуковое поле имеет активную и реактивную составляющие, поэтому суммарная интенсивность звука равна нулю. Практическими примерами реактивных звуковых полей являются поле стоячих волн (в каналах, трубах) и ближнее поле источника звука.

Существуют несколько методов определения интенсивности звука:

  • Уравнение Эйлера – в этом случае измеряют звуковое давление и градиент звукового давления, т.е. темп его изменения в зависимости от расстояния. Результат измерения градиента подставляют в уравнение Эйлера. Его решение дает колебательную скорость частиц, усредненное произведение которой с величиной звукового давления определяет интенсивность звука.
  • Конечно-разностная аппроксимация – в этом случае градиент звукового давления измеряют с помощью зонда с двумя микрофонами, разнесенными на близкое расстояние, в результате чего можно получить кусочно-линейную аппроксимацию функции, соответствующей градиенту давления. Для этого определяют два значения давления, затем разность их разность делят на расстояние между микрофонами зонда. Затем полученный градиент интегрируют, что дает колебательную скорость частиц. Мгновенные значения колебательной скорости умножают на мгновенные значения звукового давления, после чего полученное произведение усредняют по времени и получают значение интенсивности звука.

Уровни интенсивности звука, его давления, мощности и колебательной скорости частиц измеряют в децибелах. Эта величина соответствует отношению соответствующей величины к ее опорному значению, приблизительно соответствующему порогу слышимости.

Чтобы определить звуковую мощность источника шума, его условно окружают опорной поверхностью и умножают среднее значение интенсивности звука на этой поверхности на ее площадь.

Используют три основных типа опорных поверхностей: коробку, полушарие и конформную поверхность. Коробка может иметь любую форму и размеры, ее площадь легко определить, а плоские стенки позволяют достаточно просто усреднить величину интенсивности звука на каждой из них. В результате сложения отдельных значений определяется общая мощность источника звука внутри машины.

Полушарие позволяет ограничить количество измерительных точек, а в случае всенаправленного источника звука в любой из них значение интенсивности будет одинаковым. ISO 3745 рекомендует применять 10 точек на поверхности полушария: одну в вершине и по три на трех окружностях.

Конформная поверхность соответствует форме источника звука и находится на чрезвычайно малом расстоянии от него. Точки замера находятся в ближнем поле источника и обеспечивается большое отношение сигнала к шуму. Результаты позволяют локализовать отдельные источники шума.

Интенсиметрия широко применяется в строительстве. Ее используют для разработки эффективных методов звукоизоляции и шумоподавления. В строительной и архитектурной акустике применяются два метода интенсиметрии: основанный на звуковом давлении и основанный на интенсивности звука.

Первый метод описан в стандарте ISO 140 и предполагает использование двух реверберационных помещений с исследуемой перегородкой между ними. В каждом из помещений измеряется средний уровень звукового давления. Отношение интенсивности звука в передаточном помещении к интенсивности в приемном дает коэффициент ослабления звука, присущее исследуемой перегородке.

Второй метод предполагает использование только одного реверберационного помещения. В нем измеряется среднее звуковое давление, а в приемном помещении с помощью аппаратуры измеряют интенсивность звука, пропущенную исследуемым объектом.

Также достаточно часто исследуют шумы, возникающие при вращательной или возвратно-поступательной работе различных механизмов. Нашли применение интенсиметрические методы также для определения эффективности излучения, то есть сообщения воздуху звуковых колебаний.

Применяется метод и для интенсиметрии колебаний, распространяющихся в твердых телах. Интенсиметрия широко применяется для исследования вентиляционных каналов, воздуховодов, труб.

При этом применение метода для исследования высокоскоростных воздушных потоков не допускается.

Комплект оборудования для проведения интенсиметрии в общем случае включает в себя интенсиметрический зонд, анализатор и калибратор.

Интенсиметрический зонд представляет из себя два микрофона, закрепленных на жестокой распорной раме лицевыми сторонами друг против друга. В зависимости от исследуемого диапазона частот микрофоны располагаются на расстоянии 6, 12 или 50 мм друг от друга.

Анализаторы спектра ZET 017 а так же ZET 032, ZET 034 или ZET 038 позволяют в реальном масштабе времени обрабатывать полученные измеренные значения, а программное обеспечение ZETLAB ANALIZ анализировать обработанные сигналы при помощи узкополосного спектрального анализа, долеоктавного спектрального анализа, модального анализа, взаимного корреляционного анализа и пр.

Калибратор представляет собой малую акустическую камеру, в которой создается звуковое поле с точно определенными опорными уровнями давления, колебательной скорости частиц и интенсивности звука. Относительно этого поля калибруются микрофонные комплекты и проверяется точность измерений.

Пример настройки оборудования на базе программно-аппаратного комплекта ZETLAB.

Для получения необходимого результата требуется предварительная настройка программной части комплекта. Для этого понадобятся ряд программ: Формула, Фильтрация и Взаимный узкополосный спектральный анализ.

    1. Запускаем программу Формула из меню Автоматизация панели ZETLAB.Необходимо установить количество каналов 3 и произвести ряд действий, требуемых для вычисления интенсивности звука.

      Как уже было сказано, интенсивность — это усреднённое по времени произведение звукового давления и колебательной скорости частиц. Общая формула для определения интенсивности звука:

      I =(-2ρΔr)-1(p1+p2)∫(p2-p1)dt,

      где ρ — плотность среды,
      Δr — расстояние между микрофонной парой,
      p1 — звуковое давление, измеренное 1м микрофоном,
      p2 — звуковое давление, измеренное 2м микрофоном.
      Следовательно, нам необходимо через программу Формула вычислить три величины: разность звукового давления, среднее звуковое давление и градиент звукового давления:

2. Следующий шаг — определение колебательной скорости частиц. Для этого необходимо проинтегрировать полученное значение градиента звукового давления.
Запускаем программу Фильтрация сигналов из меню Автоматизация панели ZETLAB. Выбираем виртуальный канал (созданный с помощью программы Формула), определяющий градиент звукового давления и устанавливаем тип фильтрации Инт.1.

3. Заключительный шаг — получение спектра, соответствующего интенсивности звука. Запускаем программу Взаимный узкополосный спектральный анализ из меню Анализ панели ZETLAB. Производим настройку программы и смотрим усредненный взаимный спектр колебательной скорости частиц и звукового давления.

Источник: https://zetlab.com/podderzhka/vibrometriya-i-akustika/gotovyie-resheniya-na-baze-analizatorov-spetra/intensivnost-zvuka/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.