Координаты единичных векторов i j k. Единичные векторы

Координаты вектора в декартовой системе координат: векторные координаты, радиус вектор

Координаты единичных векторов i j k. Единичные векторы

Для начала дадим определение координат вектора в заданной системе координат. Чтобы ввести данное понятие, определим что мы называем прямоугольной или декартовой системой координат.

Определение 1

Прямоугольная система координат представляет из себя прямолинейную систему координат с взаимно перпендикулярными осями на плоскости или в пространстве.

С помощью введения прямоугольной системы координат на плоскости или в трехмерном пространстве становится возможным описывание геометрических фигур вместе с их свойствами при помощи уравнений и неравенств, то есть использовать алгебраические методы при решении геометрических задач.

Тем самым, мы можем привязать к заданной системе координат векторы. Это значительно расширит наши возможности при решении определенных задач

Прямоугольная система координат на плоскости обычно обозначается Oxy, где Ox и Oy – оси коорднат. Ось Ox называют осью абсцисс, а ось Oy – осью ординат (в пространстве появляется ещё одна ось Oz, которая перпендикулярна и Ox и Oy).

Пример 1

Итак, нам дана прямоугольная декартова система координат Oxy на плоскости если мы отложим от начала координат векторы i→ и j→ , направление которых соответственно совпадет с положительными направлениями осей Ox и Oy , и их длина будет равна условной единице, мы получим координатные векторы. То есть в данном случае i→ и j→ являются координатными векторами.

Координатные векторы

Определение 2

Векторы i→ и j→ называются координатными векторами для заданной системы координат.

Пример 2

Откладываем от начала координат произвольный вектор a→ . Опираясь на геометрическое определение операций над векторами, вектор a→ может быть представлен в виде a→=ax·i→+ay·j→ , где коэффициенты ax и ay – единственные в своем роде, их единственность достаточно просто доказать методом от противного.

Разложение вектора

Определение 3

Разложением вектора a→ по координатным векторам i→ и j→ на плоскости называется представление вида a→=ax·i→+ay·j→.

Определение 4

Коэффициенты ax и ay называются координатами вектора в данной системе координат на плоскости.

Координаты вектора в данной системе координат принято записывать в круглых скобках, через запятую, при этом заданные координаты следует отделять от обозначения вектора знаком равенства. К примеру, запись a→=(2;-3) означает, что вектор a→ имеет координаты (2;-3) в данной системе координат и может быть представлен в виде разложения по координатным векторам i→ и j→ какa→=2·i→-3·j→.

Замечание

Следует обратить внимание, что порядок записи координат, имеет важное значение, если вы запишите координаты вектора в другом порядке, вы получите совершенно другой вектор.

Опираясь на определения координат вектора и их разложения становится очевидным, что единичные векторы i→ и j→ имеют координаты (1;0) и (0;1) соответственно, и они могут быть представлены в виде следующих разложений i→=1·i→+0·j→; j→=0·i→+1·j→.

Также имеет место быть нулевой вектор 0→ с координатами (0;0) и разложением 0→=0·i→+0·j→.

Равные и противоположные векторы

Определение 5

Векторыa→иb→равны тогда, когда их соответствующие координаты равны.

Определение 6

Противоположным вектором называется вектор противоположный данному.

Опиши задание

Отсюда следует, что координаты такого вектора будут противоположны координатам данного вектора, то есть, -a→=(-ax;-ay).

Все вышеизложенное можно аналогично определить и для прямоугольной системы координат, заданной в трехмерном пространстве.

В такой системе координат имеет место быть тройка координатных векторов i→,j→,k→, а произвольный вектор a→ раскладывается не по двум, а уже по трем координатам, причем единственным образом и имеет вид a→=ax·i→+ay·j→+az·k→, а коэффициенты этого разложения (ax;ay;az) называются координатами вектора в данной (трехмерной) системе координат.

Следовательно, координатные векторы в трехмерном пространстве принимают также значение 1 и имеют координаты i→=(1;0;0) ,   j→=(0;1;0),   k→=(0;0;1), координаты нулевого вектора также равны нулю 0→=(0;0;0) , и в таком случае два вектора будут считаться равными, если все три соответствующие координаты векторов между собой равныa→=b→⇔ax=bx, ay=by, az=bz , и координаты противоположного вектора a→ противоположны соответствующим координатам вектора a→ , то есть,-a→=(-ax;-ay; -az) .

Координаты радиус-вектора точки

Чтобы ввести данное определение, требуется показать в данной системе координат связь координат точки и координат вектора.

Пусть нам дана некоторая прямоугольная декартова система координат Oxy и на ней задана произвольная точка M с координатами M(xM;yM).

Определение 7

Вектор OM→ называется радиус-вектором точки M.

Определим, какие координаты в данной системе координат имеет радиус-вектор точки

Вектор OM→ имеет вид суммы OM→=OMx→+OMy→=xM·i→+yM·j→, где точки Mx и My это проекции точки М на координатные прямые Ox и Oy соответственно (данные рассуждения следуют из определения проекция точки на прямую), а i→ и j→ – координатные векторы, следовательно, вектор OM→ имеет координаты (xM;yM) в данной системе координат.

Иначе говоря, координаты радиус-вектора точки М равны соответствующим координатам точки М в прямоугольной декартовой системе координат.

Аналогично в трехмерном пространстве радиус-вектор точки M(xM;yM;zM) разлагается по координатным векторам как OM→=OMx→+OMy→+OMz→=xM·i→+yM·j→+zM·k→, следовательно, OM→=(xM;yM;zM).

Источник: https://Zaochnik.com/spravochnik/matematika/vektory/koordinaty-vektora-v-dsk/

Вектор. Основные свойства

Координаты единичных векторов i j k. Единичные векторы

>> Лекции >> Аналитическая геометрия >> Основные свойства векторов

Определение Упорядоченную совокупность ( x1, x2, … , x n ) n вещественных чисел называют n-мерным вектором, а числа xi ( i = 1,…,n) – компонентами, или координатами, вектора.

Пример. Если, например, некоторый автомобильный завод должен выпустить в смену 50 легковых автомобилей, 100 грузовых, 10 автобусов, 50 комплектов запчастей для легковых автомобилей и 150 комплектов для грузовых автомобилей и автобусов, то производственную программу этого завода можно записать в виде вектора (50, 100, 10, 50, 150), имеющего пять компонент.

Обозначения. Векторы обозначают жирными строчными буквами или буквами с чертой или стрелкой наверху, например, a или . Два вектора называются равными, если они имеют одинаковое число компонент и их соответствующие компоненты равны.

Компоненты вектора нельзя менять местами, например, (3, 2, 5, 0, 1) и (2, 3, 5, 0, 1) разные вектора.
Операции над векторами. Произведением вектора x = (x1, x2 , … ,xn) на действительное число λ называется вектор λ x = (λ x1, λ x2, … , λ xn).

Суммой векторов x = (x1, x2, … ,xn) и y = (y1, y2 , … ,yn) называется вектор x + y = (x1 + y1, x2 + y2, … , x n+ + yn).

Пространство векторов. Nмерное векторное пространствоRn определяется как множество всех n-мерных векторов, для которых определены операции умножения на действительные числа и сложение.

Экономическая иллюстрация. Экономическая иллюстрация n-мерного векторного пространства: пространство благ (товаров).

Под товаром мы будем понимать некоторое благо или услугу, поступившие в продажу в определенное время в определенном месте.

Предположим, что существует конечное число наличных товаров n; количества каждого из них, приобретенные потребителем, характеризуются набором товаров

x = (x1, x2, …, xn),

где через xi обозначается количество i-го блага, приобретенного потребителем. Будем считать, что все товары обладают свойством произвольной делимости, так что может быть куплено любое неотрицательное количество каждого из них. Тогда все возможные наборы товаров являются векторами пространства товаров C = { x = (x1, x2, … , xn) xi ≥ 0, i =1,…,n}.

Линейная независимость. Система e1, e2, … , em n-мерных векторов называется линейно зависимой, если найдутся такие числа λ1, λ2, …

, λm, из которых хотя бы одно отлично от нуля, что выполняется равенство λ1 e1 + λm em = 0; в противном случае данная система векторов называется линейно независимой, то есть указанное равенство возможно лишь в случае, когда все λ1=λ2=…=λm=0.

Геометрический смысл линейной зависимости векторов в R3, интерпретируемых как направленные отрезки, поясняют следующие теоремы.

Теорема 1. Система, состоящая из одного вектора, линейно зависима тогда и только тогда, когда этот вектор нулевой.

Теорема 2. Для того, чтобы два вектора были линейно зависимы, необходимо и достаточно, чтобы они были коллинеарны (параллельны).

Теорема 3. Для того, чтобы три вектора были линейно зависимы, необходимо и достаточно, чтобы они были компланарны (лежали в одной плоскости).

Левая и правая тройки векторов.

Тройка некомпланарных векторов a, b, c называется правой, если наблюдателю из их общего начала обход концов векторов a, b, c в указанном порядке кажется совершающимся по часовой стрелке. B противном случае a, b, c левая тройка. Все правые (или левые) тройки векторов называются одинаковоориентированными.

Базис и координаты. Тройка e1, e2,e3 некомпланарных векторов в R3 называется базисом, а сами векторы e1, e2,e3 – базисными. Любой вектор a может быть единственным образом разложен по базисным векторам, то есть представлен в виде

а = x1 e1 + x2 e2 + x3 e3,                                                                            (1.1)

числа x1, x2, x3 в разложении (1.1) называются координатами вектора a в базисе e1, e2,e3 и обозначаются a(x1, x2, x3).

Ортонормированный базис. Если векторы e1, e2,e3 попарно перпендикулярны и длина каждого из них равна единице, то базис называется ортонормированным, а координаты x1, x2, x3 – прямоугольными. Базисные векторы ортонормированного базиса будем обозначать i, j, k.

Будем предполагать, что в пространстве R3 выбрана правая система декартовых прямоугольных координат {0, i, j, k}.

Векторное произведение. Векторным произведением вектора а на вектор b называется вектор c, который определяется следующими тремя условиями:

1. Длина вектора c численно равна площади параллелограмма, построенного на векторах a и b, т. е.
c
= |a||b| sin (ab).

2. Вектор c перпендикулярен к каждому из векторов a и b.

3. Векторы a,b и c, взятые в указанном порядке, образуют правую тройку.

Для векторного произведения c вводится обозначение c = [ab] или
c = a × b.

Если векторы a и b коллинеарны, то sin(ab) = 0 и [ab] = 0, в частности, [aa] = 0. Векторные произведения ортов: [ij]= k, [jk] = i, [ki]= j.

Если векторы a и b заданы в базисе i, j, k координатами a(a1, a2, a3), b(b1, b2, b3), то

Смешанное произведение. Если векторное произведение двух векторов а и b скалярноумножается на третий вектор c, то такое произведение трех векторов называется смешанным произведением и обозначается символом ab c.

Если векторы a, b и c в базисе i, j, k заданы своими координатами
a(a1, a2, a3), b(b1, b2, b3), c(c1, c2, c3), то

.

Смешанное произведение имеет простое геометрическое толкование – это скаляр, по абсолютной величине равный объему параллелепипеда, построенного на трех данных векторах.

Если векторы образуют правую тройку, то их смешанное произведение есть число положительное, равное указанному объему; если же тройка a, b, c – левая, то a b c0.

Имеем систему уравнений для нахождения x,y,z: 11x +10y + 2z = 0, 4x+3z=0, x2 + y2 + z2 = 0.

Из первого и второго уравнений системы получим z = -4/3 x, y = -5/6 x. Подставляя y и z в третье уравнение, будем иметь: x2 = 36/125, откуда
x = ± . Используя условие a b c >0, получим неравенство

С учетом выражений для z и y перепишем полученное неравенство в виде: 625/6 x > 0, откуда следует, что x>0. Итак, x = , y = -, z =-.

Источник: https://www.mathelp.spb.ru/book1/vector.htm

Элементы векторной алгебры. Векторы. Координаты векторов. Линейные операции над векторами

Координаты единичных векторов i j k. Единичные векторы

Аннотация: Вектор – также относится к базовым инструментам высшей математики. В лекции даются разные типы векторов и кратко рассматриваются их свойства

Определение 1. Величины называютскалярными (скалярами), если они после выбора единиц измерения полностью характеризуются одним числом.

Примером скалярных величин могут служить угол, площадь, объем, плотность среды, сопротивление, температура.

Следует различать два типа скалярных величин: чистые скаляры и псевдоскаляры.

Определение 2. Если некоторая скалярная величина полностью определяется одним числом, не зависящим от выбора осей отсчета, то тогда говорят очистойскалярной величине или обистинномскаляре.

Определение 3. Если некоторая скалярная величина определяется одним числом, абсолютная величина которого не зависит от выбора осей отсчета, а ее знак зависит от выбора положительного направления на осях координат, то тогда говорят опсевдоскалярнойвеличине.

Определение 4. Величина называетсявектором (векторной), если она определяется двумя элементами различной природы: алгебраическим элементом – числом, показывающим длину вектора и являющимся скаляром, и геометрическим элементом, указывающим направление вектора.

Геометрически принято изображать вектор направленным отрезком.

Для обозначения векторных величин используют малые латинские буквы, выделенные жирным шрифтом ( a ), либо со стрелочкой вверху ( ), либо две заглавные буквы с черточкой вверху ( ), где А – начало вектора, В – его конец (рис. 5.1).

Заметим, что зная координаты начала и конца вектора, можно найти координаты вектора, определяемого этими точками , т.е. от координат конца вычитают координаты начала вектора.

Рис. 5.1.

Определение 5. Два одинаково направленных и параллельных вектора называютколлинеарными.

Коллинеарные векторы могут быть разной длины (рис. 5.2, векторы АВ и А1В1 ), поэтому одна только коллинеарность не гарантирует равенства векторов. Если векторы коллинеарны, а их длины (модули) равны (рис. 5.2, векторы АВ и А2В2 ), то такие векторы называются эквиполентными.

Рис. 5.2.

Определение 6. Если модуль вектораравен единице, то такой вектор называютединичным, илиортом.

Орт вектора всегда имеет то же направление, что и рассматриваемый вектор. Единичные векторы координатных осей 0х, 0у, 0z обычно обозначают соответственно как (или i, j, k ).

Определение 7. Если вектор не зависит от изменения направления, выбранного на осях координат в качестве положительного, то такой вектор называютполярным.

К полярным векторам относится векторы силы, скорости, напряженности электрического поля и др.

Определение 8. Если при изменении направления, выбранного на осях координат в качестве положительного, вектор, меняет свой знак, то такой вектор называютосевым.

Из геометрического определения коллинеарности, данного ранее, вытекает еще одно определение коллинеарности.

Определение 9. Два вектораиназываютколлинеарными, если существуют такие два числа и , не равные нулю одновременно, что выполняется равенство .

Определение 10. Три вектора , иназовемкомпланарными, если существуют такие три числа , и , не равные одновременно нулю, что выполняется равенство

Геометрический смысл определения очевиден: если векторы , и параллельны одной плоскости, то обязательно выполняется условие компланарности независимо от того принадлежат эти векторы одной плоскости или параллельным (различным) плоскостям. Верно и обратное утверждение: если найдутся на трех плоскостях три компланарных вектора, по одному в плоскости, то эти плоскости будут параллельны.

Если векторы и не коллинеарны или , и не компланарны, то такие векторы называют линейно независимыми соответственно на плоскости или в пространстве.

Два ненулевых вектора и ортогональны, если они перпендикулярны (проекция вектора на и проекция вектора на равны нулю). Тогда записывают . Такие векторы ВСЕГДА линейно независимы.

Если три ненулевых векторы , и попарно ортогональны ( ), то тогда они образуют тройку линейно независимых векторов.

Определение 11. Линейно независимые векторы , и образуютправую тройку векторов (рис. 5.3), если они имеют такую же ориентацию, как соответственно большой, указательный и средний палец правой руки, в противном случае говорят о левой тройке векторов (рис. 5.4).

Рис. 5.3.
Рис. 5.4.

Определение 12. Три единичных вектора i, j, k, попарно ортогональные друг другу и образующие правую тройку векторов, называютдекартовой системой координат.

Определение 13. Углом между векторамииназывают такой угол , не превосходящий , на который нужно повернуть вектор , чтобы совместить его с направлением вектора , начало которого должно совпадать с началом . Угол между векторами обозначается ( ) или ( ).

Источник: https://www.intuit.ru/studies/courses/18668/208/lecture/5371

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.